Interactions Among Glucose Delivery, Transport, and Phosphorylation That Underlie Skeletal Muscle Insulin Resistance in Obesity and Type 2 Diabetes: Studies With Dynamic PET Imaging
نویسندگان
چکیده
Dynamic positron emission tomography (PET) imaging was performed using sequential tracer injections ([(15)O]H2O, [(11)C]3-O-methylglucose [3-OMG], and [(18)F]fluorodeoxyglucose [FDG]) to quantify, respectively, skeletal muscle tissue perfusion (glucose delivery), kinetics of bidirectional glucose transport, and glucose phosphorylation to interrogate the individual contribution and interaction among these steps in muscle insulin resistance (IR) in type 2 diabetes (T2D). PET imaging was performed in normal weight nondiabetic subjects (NW) (n = 5), obese nondiabetic subjects (OB) (n = 6), and obese subjects with T2D (n = 7) during fasting conditions and separately during a 6-h euglycemic insulin infusion at 40 mU · m(-2) · min(-1). Tissue tracer activities were derived specifically within the soleus muscle with PET images and magnetic resonance imaging. During fasting, NW, OB, and T2D subjects had similar [(11)C]3-OMG and [(18)F]FDG uptake despite group differences for tissue perfusion. During insulin-stimulated conditions, IR was clearly evident in T2D (P < 0.01), and [(18)F]FDG uptake by muscle was inversely correlated with systemic IR (P < 0.001). The increase in insulin-stimulated glucose transport was less (P < 0.01) in T2D (twofold) than in NW (sevenfold) or OB (sixfold) subjects. The fractional phosphorylation of [(18)F]FDG during insulin infusion was also significantly lower in T2D (P < 0.01). Dynamic triple-tracer PET imaging indicates that skeletal muscle IR in T2D involves a severe impairment of glucose transport and additional impairment in the efficiency of glucose phosphorylation.
منابع مشابه
Interactions of impaired glucose transport and phosphorylation in skeletal muscle insulin resistance: a dose-response assessment using positron emission tomography.
It has been postulated that glucose transport is the principal site of skeletal muscle insulin resistance in obesity and type 2 diabetes, though a distribution of control between glucose transport and phosphorylation has also been proposed. The current study examined whether the respective contributions of transport and phosphorylation to insulin resistance are modulated across a dose range of ...
متن کاملUnderstanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach
Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...
متن کاملWeight loss-induced plasticity of glucose transport and phosphorylation in the insulin resistance of obesity and type 2 diabetes.
We tested the hypothesis that weight loss alleviates insulin resistance in skeletal muscle within the proximal steps of glucose metabolism, namely substrate delivery, glucose transport, and glucose phosphorylation. In obese subjects with and without type 2 diabetes, in vivo skeletal muscle assessments were obtained with dynamic positron emission tomography (PET) imaging performed during euglyce...
متن کاملThe effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle.
Defects of glucose transport and phosphorylation may underlie insulin resistance in obesity and non-insulin-dependent diabetes mellitus (NIDDM). To test this hypothesis, dynamic imaging of 18F-2-deoxy-glucose uptake into midthigh muscle was performed using positron emission tomography during basal and insulin-stimulated conditions (40 mU/m2 per min), in eight lean nondiabetic, eight obese nondi...
متن کاملPathogenesis of Insulin Resistance in Skeletal Muscle
Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesi...
متن کامل